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We present a general scheme to calculate the second-, third-, and fourth-order elastic constants of single
crystals with arbitrary symmetry by employing ab initio density-functional theory. The method utilizes a series
of homogeneous deformation strains applied to a crystalline system to obtain the internal energy-strain rela-
tions. From the nonlinear least-squares fitting, we obtain the elastic constants from the coefficients of the fitted
polynomials of the internal energy functions. We applied this method first to four fcc metal crystals, Cu, Al, Au,
and Ag. The calculated second-, third-, and fourth-order elastic constants are compared with the available
experimental data and other theoretical calculations and found very good agreement. Since accurate determi-
nation of higher-order elastic constants, in particular, the fourth-order elastic constants from experiment, is still
a challenge, the theoretical approach presented here is certainly of a great help to fill the gap.
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I. INTRODUCTION

In the theory of linear elasticity, infinitesimal deformation
strains are assumed. As a result, the second-order elastic con-
stants �SOECs� are sufficient to describe the elastic stress-
strain response and wave propagation in solids.1,2 In case of
finite strains, the theory of nonlinear elasticity is required.3–7

It is well known that third-order elastic constants �TOECs�
are important quantities to describe nonlinear mechanical ef-
fects. In many occasions, even higher-order elastic constants
such as the fourth-order ones may be needed to describe the
nonlinear effect. As shown by Ghate,8 for a crystal with cu-
bic symmetry subject to a simple shear with a finite shear
strain, e.g., �12, the elastic energy expanded in Taylor series
to the third order in terms of the strain parameter gives E
=E0+�2+�3, where E0 is the energy of the undeformed
sample, �2=C44�12

2 /2, and �3=0. The last result shows that
nonlinear effect, if there is any, would not be present in this
case. To reach higher-order accuracy, one would expect to
add the fourth-order term, �4= 2

3C4444�12
4 , in which the C4444

is the fourth-order elastic constant �FOEC�. In many real
applications beyond this simple example, there are plenty of
cases where the high-order elastic constants are needed that
are not merely limited in the area of mechanics. For ex-
ample, TOECs, FOECs, and higher-order elastic constants
have been used to interpret anharmonic phenomena in solid-
state physics, such as phonon-phonon interaction, Grűneisen
parameters,9 etc. They also have appeared in the develop-
ment of ion-electron pseudopotentials10 or empirical inter-
atomic potentials.11 Recently, the nonlinear effects in
elastic12–14 and piezoelectric properties15,16 have drawn many
interests in nanoscale materials where nonlinear effects be-
come significant. Of particular interest are those activities
that involve the fourth-order elastic constants in the descrip-
tion of nonlinear phenomena such as intermodulation in
thickness-shear and trapped-energy resonators,17,18 the gen-
eration of third harmonics in finite-amplitude waves,19 the
description of shock-compression stress-strain curves,20,21

and in the nonlinear constitutive equations for thermoelectro-
elastic materials.22

Many experiments have been performed to determine SO-
ECs and high-order elastic constants.23 However, for crystals

with low symmetry or with low-yield stress, to obtain a com-
plete set of TOECs is still not a simple task. For FOECs the
difficult becomes more acute. As a result, there are few ex-
perimental values for the FOECs available so far. A feasible
alternative is theoretical calculations. In the past two de-
cades, several theoretical methods have been developed to
calculate higher-order elastic constants for single crystals.
For the TOECs, there are quite a few methods available,
including empirical interatomic force-constant model,24,25

molecular-dynamics simulation using fluctuation
formula,26,27 the methods of homogeneous deformation
based on empirical or the first-principles total-energy
methods,28 and other quantum calculations.29–31 The ap-
proaches used in the TOEC calculations, in principle, could
be extended in the calculations of the FOECs, but certain
care must be exercised due to the increasing complexity of
the formulations and the demand for high accuracies needed
in the computation.

In this work, we shall employ the method similar to that
practiced earlier by Nielsen and Martin.29,30 In this approach,
the homogeneous deformation strain is applied to the system
and usually simple deformation modes are used such as
uniaxial tension or compression, simple or pure shear, and
other combinations of homogeneous strains. The total elastic
energies of the system subject to these deformations are cal-
culated using ab initio methods employing the density-
functional theory �DFT�. The internal energy-strain curves
under the various strains, which are often far beyond those of
the linear elastic limit, are numerically fitted using polyno-
mials. Because of the deliberate selection of the homoge-
neous deformation modes, the coefficients in the internal en-
ergy polynomial functions are simple combinations of the
second-, third-, or fourth-order elastic constants. Through the
numerical fitting, we can obtain the elastic constants straight-
forwardly. Recently, the same method was used in the first-
principles quantum mechanics calculations of the third-order
elastic constants by Zhao et al.32 and Lopuszynski and
Majewski33 in single crystals with covalent bond. Their re-
sults show good agreement with experiments. In this paper,
we extend this method to calculating the fourth-order elastic
constants, which to the best of our knowledge has not been
systematically performed and tested.
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This paper is organized as follows. In Sec. II, we give a
general introduction of nonlinear elasticity with a particular
attention paid to the relation of the higher-order elastic con-
stants with the internal energy. In Sec. III, we present the
methods of applying homogeneous deformation to the sys-
tem and ab initio calculation to obtain the internal energy-
deformation strain relations. In Sec. IV, we give the results
for the calculated fourth-order elastic constants for the four
fcc metals, Cu, Al, Au, and Ag, along with the second- and
third-order ones. Available results from experiments and
other theoretical methods are also shown for comparison. In
Sec. V, we draw conclusions from this work.

II. THEORY OF NONLINEAR ELASTICITY

For a solid-body subject to a finite deformation, the con-
figuration of a material point in the system after deformation
is represented as x=x�a�, where a is the initial configuration
at the equilibrium state. The deformation gradient is defined
by

Jij =
�xi

�aj
, �1�

where i and j�=1,2 ,3� represent the Cartesian coordinates.
Then the Lagrangian strain tensor is defined as

� =
1

2
�JTJ − I� , �2�

where I is the unit matrix.
The internal energy and the free energy are related to the

Lagrangian strain tensor in the theory of nonlinear elasticity
through Taylor-series expansion in terms of the strain
tensor,2–4

U�a,�ij,S� = U�a,S� + �1/2!�V�
ijkl

Cijkl
S �ij�kl

+ �1/3!�V �
ijklmn

Cijklmn
s �ij�kl�mn

+ �1/4!�V �
ijklmnpq

Cijklmnpq
s �ij�kl�mn�pq + ¯ ,

�3�

F�a,�ij,T� = F�a,T� + �1/2!�V�
ijkl

Cijkl
T �ij�kl

+ �1/3!�V �
ijklmn

Cijklmn
T �ij�kl�mn

+ �1/4!�V �
ijklmnpq

Cijklmnpq
T �ij�kl�mn�pq + ¯ ,

�4�

where U�a ,�ij ,S� is the internal energy, F�a ,�ij ,S� is the
Helmholtz free energy, T is the temperature, S is the entropy,
and V is the volume of the system.

The elastic constants of second, third, fourth, and higher
orders are defined as the second-, third-, fourth-, and higher-
order derivatives of the above functions with respect to the
strain, respectively. The adiabatic elastic constants of second,
third, and fourth orders are

Cijkl
S = V−1��2U/��ij � �kl�S�, �5�

Cijklmn
S = V−1��2U/��ij � �kl � �mn�S�, �6�

Cijklmnpq
S = V−1��2U/��ij � �kl � �mn � �pq�S�. �7�

And the isothermal elastic constants are

Cijkl
T = V−1��2F/��ij � �kl�T�, �8�

Cijklmn
T = V−1��2F/��ij � �kl � �mn�T�, �9�

Cijklmnpq
T = V−1��2F/��ij � �kl � �mn � �pq�T�. �10�

These elastic constants are defined at the initial configuration
a, where �ij are measured from a. The initial state as repre-
sented by a is in fact arbitrary but must be in equilibrium. In
this work, we have the initial state a at �=0, a undeformed
state. Since our ab initio calculations are performed at 0 K,
F=U−TS=U, so CS=CT. We will not distinguish those two
types of elastic constants in the following.

We can simplify the notations in the tensors by using the
Voigt notation �11→1, 22→2, 33→3, 23→4, 31→5, and
12→6�. We have therefore for the strain tensors �11→�1,
�22→�2, �33→�3, �23→�4 /2, �31→�5 /2, and
�12→�6 /2. Equations �3� and �4� now can be written as

V−1�U�a,�� − U�a,0��

=
1

2! �
i,j=1,6

cij�i� j +
1

3! �
i,j,k=1,6

cijk�i� j�k

+
1

4! �
i,j,k,l=1,6

cijkl�i� j�k�l + ¯ . �11�

For single crystals with cubic symmetry, we can express Eq.
�11� in the second-, third- and fourth-order terms of the strain
tensor,

V−1�U�a,�� − U�a,0�� = �2 + �3 + �4 ¯ , �12�

where

�2 =
1

2
c11��1

2 + �2
2 + �3

2� + c12��1�2 + �2�3 + �3�1�

+
1

2
c44��4

2 + �5
2 + �6

2� , �13�

�3 =
1

6
c111��1

3 + �2
3 + �3

3�

+
1

2
c112��2�1

2 + �3�1
2 + �1�2

2 + �1�3
2 + �2�3

2 + �3�2
3�

+ c123�1�2�3 +
1

2
c144��1�4

2 + �2�5
2 + �3�6

2�

+
1

2
c155��2�4

2 + �3�4
2 + �1�5

2 + �3�5
2 + �1�6

2 + �2�6
2�

+ c456�4�5�6, �14�

and8
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�4 =
1

24
C1111��1

4 + �2
4 + �3

4� +
1

6
C1112��1

3��2 + �3� + �2
3��3 + �1� + �3

3��1 + �2�� +
1

4
C1122��1

2�2
2 + �2

2�3
2 + �3

2�1
2�

+
1

2
C1123��1

2�2�3 + �2
2�3�1 + �3

2�1�2� +
1

4
C1144��1

2�4
2 + �2

2�5
2 + �3

2�6
2� +

1

4
C1155��1

2��5
2 + �6

2� + �2
2��4

2 + �6
2� + �3

2��4
2 + �5

2��

+
1

2
C1255��1�2��4

2 + �5
2� + �2�3��5

2 + �6
2� + �1�3��4

2 + �6
2�� +

1

2
C1266��1�2�6

2 + �2�3�4
2 + �1�3�5

2�

+ C1456��4�5�6��1 + �2 + �3�� +
1

24
C4444��4

4 + �5
4 + �6

4� +
1

4
C4455��4

2�5
2 + �5

2�6
2 + �6

2�4
2� . �15�

As shown above, there are three independent SOECs �c11,
c12, and c44�, six TOECs �c111, c112, c123, c144, c155, and c456�,
and 11 FOECs �c1111, c1112, c1122, c1123, c1144, c1155, c1255,
c1266, c1456, c4444, and c4455�. As shown below, these elastic
constants can be obtained in the theoretical calculations by
subjecting the system to various simple deformation strains,
provided also that the system does not have any polymorphic
phase transition and internal deformation under these strains.

The Lagrangian stress is defined as the first-order deriva-
tive of the internal energy or Helmholtz free energy with
respect to the strain tensor,

�ij = V−1��U/��ij� = V−1��F/��ij� , �16�

which can also be used also to evaluate the elastic
constants.29,30

III. METHODS OF HOMOGENEOUS DEFORMATION
AND AB INITIO COMPUTATION

Equations �11� and �13�–�15� suggest that we can treat the
internal energy difference as a polynomial function of the
strain �ij. Since there are six strain components in the strain
tensor when the system is rotation-free, one must select spe-
cific deformation modes to reduce the number of the strain
components that will appear in the internal energy function.

To make this feasible, we can select certain simple deforma-
tion or loading modes such that the strain tensor �ij only has
one or a few components. As a result, the coefficients in the
polynomial are simple combinations of the elastic constants.
For example, if we choose to subject the system with a
uniaxial tension along the x direction �or i, j=1�, the tensile
strain, �1=� and the rest of the strain components are all
zero, that is, �= �� ,0 ,0 ,0 ,0 ,0 ,0�. From Eqs. �13�–�15�, we
can see that this selection of the deformation mode results in
an internal energy that can be expressed as
a polynomial of the strain parameter �, that is,
V−1�U�0,��−U�0,0��=1 /2c11�

2+1 /6c111�
3+1 /24c1111�

4. To
simplify the matter further, we can use only one scalar pa-
rameter � for all nonzero strain components. The selection of
the different deformation modes leads to different strains
used in this work, which are labeled as ��, �=A ,B , . . . ,K,
and listed in Table I. There are total of 11 independent de-
formation modes we use in this work. Therefore, each time
we apply a certain type of deformation mode to the crystal
system, we use a specific strain parameter �� in which there
is only one strain parameter � that we can vary. That is, when
we substitute a particular type of strain to Eqs. �11�–�16�, we
will have the polynomial function for the internal energy
function and the stress,

TABLE I. For each type of strain modes, �����, �=A ,B , . . . ,K, the internal energy is expressed as a polynomial function of �. The
coefficients P2 , P3 , P4 in Eq. �17� are shown as the linear combinations of the second-, third-, and fourth-order elastic constants, respectively.

Strain type P2 P3 P4

�A= �� ,0 ,0 ,0 ,0 ,0� 1
2C11

1
6C111

1
24C1111

�B= �� ,� ,0 ,0 ,0 ,0� C11+C12
1
3C111+C112

1
12C1111+ 1

3C1112+ 1
4C1122

�C= �� ,−� ,0 ,0 ,0 ,0� C11−C12 0 1
12C1111− 1

3C1112+ 1
4C1122

�D= �� ,0 ,0 ,2� ,0 ,0� 1
2C11+2C44

1
6C111+2C144

1
24C1111+C1144+ 2

3C4444

�E= �� ,0 ,0 ,0 ,0 ,2�� 1
2C11+2C44

1
6C111+2C155

1
24C1111+C1155+ 2

3C4444

�F= �0,0 ,0 ,2� ,2� ,2�� 6C44 8C456 2C4444+12C4455

�G= �0,0 ,0 ,2� ,0 ,0� 2C44 0 2
3C4444

�H= �� ,� ,0 ,0 ,0 ,2�� C11+C12+2C44
1
3C111+C112+4C155

1
12C1111+ 1

3C1112+ 1
4C1122+2C1155+2C1266+ 2

3C4444

�I= �� ,� ,0 ,2� ,0 ,0� C11+C12+2C44
1
3C111+C112+2C144+2C155

1
12C1111+ 1

3C1112+ 1
4C1122+C1144+C1155+2C1255+ 2

3C4444

�J= �� ,0 ,0 ,2� ,2� ,2�� 1
2C11+3C44

1
6C111+2C144+4C155+8C456

1
24C1111+C1144+2C1155+8C1456+2C4444+12C4455

�K= �� ,� ,� ,0 ,0 ,0� 3
2C11+3C12

1
2C111+3C112+C123

1
8C1111+C1112+ 3

4C1122+ 3
2C1123
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V−1�U�a,�� − U�a,0�� = f��������

= P2�2 + P3�3 + P4�4 + O��5� ,

�17�

V−1��U/��i� = ��������� = Q1� + Q2�2 + Q3�3 + O��4� ,

�18�

where �=A ,B , . . . ,K and the coefficients, P2, P3, P4, Q1, Q2,
and Q3, are related to the elastic constants. As mentioned
earlier, we have 11 of those functions for the internal ener-
gies and stresses corresponding to the different strains that
are needed to fit 11 of the FOECs �see Table I�.

To implement the different deformation modes in our cal-
culation, we need to have the deformation gradient matrix J.
As mentioned at Eq. �2�, J is related to the strain �. Inversion
of Eq. �2� gives

Jij = �ij + �ij −
1

2�
k

�ki�kj + ¯ . �19�

For a given strain �, in general, J is not unique but this is not
a problem since the Lagrange strain brings rotational invari-
ance of total energy. Furthermore, for the system without
rotation Eq. �19� provides a unique relation. We then apply
the deformation gradient J to each of the crystal lattice vec-
tor ri, where i is the lattice index. The deformed or strained
crystal is obtained then from Ri=Jijrj.

For each specific deformation mode in our calculation la-
beled as �=A ,B , . . . ,K, we change the value of � from
−��max� to +��max� with a finite step size ��, where �max is the
maximum value for the strain parameter chosen for each de-
formation calculation. As we show below, the values for both
�max and �� are important to obtaining high-quality data,
which are needed for the calculations of the higher-order
elastic constants. For each value of �, the total energy and
stress tensor of the deformed crystal are calculated by
ab initio method. Therefore, in our case, the 11 internal en-
ergy polynomial curves are calculated separately.

To obtain the coefficients in Eqs. �17� and �18� we fit the
polynomial curves, f��� and ����. Using nonlinear least-
squares fitting, we first obtain the values for the coefficients
P2 , P3 , P4 and Q1 ,Q2 ,Q3. Each of these coefficients is a lin-
ear combination of the second-, third-, or fourth-order elastic
constants. The detailed relations for Pi and the elastic con-
stants are given in Table I. Then from these relations, we can
obtain the elastic constants.

In this paper, we will use fcc single crystal as examples
because first, they do not possess internal deformation re-
lated to the absence of inversion symmetry. Second, as com-
pared with other types of crystals, the fcc metals have the
complete set of the second- and third-order elastic constants
available from experiments, so we have those reference data
to compare. Third, since the fourth-order elastic constants are
very difficult to obtain in experiment and only available in
theoretical calculations, our calculation would be more valu-
able in providing the data needed for these systems. Since we
propose to use DFT to compute the FOECs, our goal is more
on testing the feasibility than on general utility of this tech-

nique which may be extended later to other systems with
more industrial and commercial relevance, which includes
some covalent crystals that have the FOECs available from
experiments.23

As mentioned before, for the cubic crystals, there are 11
independent fourth-order elastic constants, so we need at
least 11 types of homogeneous deformation strain parameters
since for each deformation mode, we can only identify one
coefficient as a linear combination of a certain number of the
fourth-order elastic constants. We should mention that from
the stress-strain relation �Eq. �16�� we could in principle ob-
tain the fourth-order elastic constants as originally shown by
Nielsen and Martin.29,30 In this work, however, we shall fo-
cus on the method based on the internal energy-strain rela-
tion �Eqs. �11�–�15��.

To obtain the internal energy or strain energy at T=0 and
with only external force exerted by applying strain, we per-
formed the ab initio calculations using the Vienna ab initio
simulation package �VASP� developed by the Hafner Re-
search Group at the University of Vienna.34 VASP uses
pseudopotentials or the projector-augmented wave method
and a plane-wave basis set. To obtain lattice parameters that
are in better agreement with experimental values, we used
the exchange-correlation energy evaluated by local-density
approximation �LDA� for Cu and Al; for Ag and Au we used
generalized gradient approximation �GGA�. Ultrasoft
pseudopotentials were always employed to describe the
electron-ion interactions.35 Since high accuracy is needed to
evaluate the FOECs, to test the convergence of the total en-
ergy and the FOECs, we used the k-point mesh up to
30	30	30 in our calculations following the Monkhost-
Pack scheme. As our experience shows, for up to 24	24
	24 mesh size it is sufficient to reach the desired conver-
gence for the total energy as well as for the fourth-order
elastic constants. We took the cutoff energy set at Ecutof f

Ag

=500 eV, Ecutof f
Cu =490 eV, Ecutof f

Al =500 eV, and Ecutof f
Au

=450 eV, which as our convergence test shows are suffi-
ciently large for the total energy to converge to the equilib-
rium state and particularly for the fourth-order elastic con-
stants to converge well.

Take Cu as an example. Figure 1�a� shows the internal
energy convergence with the k-point grid size. Starting from
14	14	14 k-point grid, the internal energy is well con-
verged after 24	24	24 mesh size. Figure 1�b� is a zoom-in
picture of Fig. 1�a�, it shows at the k-point grid size we used
up to 30	30	30, the internal energy convergence at meV
level. Figure 2 shows how the selection of the cutoff energy
affects the internal energy convergence. As shown,
Ecutof f

Cu =490 eV is sufficient. The calculated lattice constant
of the fcc Cu at the equilibrium state is shown in Fig. 3; so
we use 3.64 Å as the equilibrium lattice parameter to con-
struct our supercell in the simulation work later on.

The convergence test for the calculated elastic constants
of Cu is presented in Figs. 4 and 5. The results show a
stronger dependence of the fourth-order elastic constants
C1111,C1112,C4444,C1155 on the cutoff energy and Monkhost-
Pack k-point mesh size as compared with the total energy.
From the four samples, it is clear that the FOECs converge
rapidly after the k-point mesh size reaches 24	24	24. For
the selected parameters �Ecutof f

Cu =490 eV and 30	30	30
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k-point mesh size�, the relative difference between the FO-
ECs obtained with this mesh size and with the smaller mesh
size of 28	28	28 is less than 1%. This difference is less
than the standard error when we perform polynomial fitting.
Therefore, we adopt the following criterion in our selection
of the k-point mesh size: in the converging region �the mesh
size is larger than 24	24	24�, if the difference of the
FOECs calculated with two successive k-point mesh sizes
are within 1%, we shall pick the later as our choice. The
same principle applies to cutoff energy selection. This ap-
proach allows us to save considerable amount of computing
time.

The lattice constants we obtained for Cu, Au, Al, and Ag
are very close to the experimental measurements. The results
are listed in Table II. Ag has a relatively larger deviation as

compared with other metals in this group. As seen below, this
larger error for Ag in the lattice constant may also be the
reason that the elastic constants calculated show larger dif-

FIG. 1. �a� The dependence of the first-principles results of the
internal energy of Cu on the k-point mesh size. The energy con-
verges well when the k-point mesh size goes beyond 14	14	14.
�b� The inset is the zoom-in picture of the internal energy variation
with the k-point mesh size. It shows that the energy converges to
meV level at the choice of the k-point mesh size.

FIG. 2. �a� The calculated internal energy of Cu as a function of
the cutoff energy. �b� The inset is the zoom-in picture of the energy
that converges within meV level when the cutoff energy is beyond
340 eV. In our calculation, we chose Ecutof f

Cu =490 eV.

FIG. 3. In the calculated internal energy of Cu as a function of
lattice constant, the equilibrium lattice parameter is found to be
3.64 Å, which is determined from the corresponding minimum
value of the internal energy.

(a)

(b)

FIG. 4. The dependence of four fourth-order elastic constants
C1111,C1112,C4444,C1155 on the Monkhost-Pack k-point mesh size.
With Ecutof f

Cu =490 eV applied to all mesh sizes, the relative differ-
ence between two successive values of examined constants in our
test after 24	24	24 is lower than 1%.
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ferences as compared with the reference data. In addition, we
would like to mention that since our calculation is performed
at 0 K and the experimental values are measured at room
temperature, certain differences in the lattice constants and
elastic constants should be anticipated. Based on those cal-
culated lattice constants, we prepared supercells to calculate
energy-strain curves. The deformation is implemented for
each supercell using the deformation gradient from Eq. �19�
in the incremental fashion governed by the two parameters
�max and ��.

IV. RESULTS

Table III shows all elastic constants up to the fourth-order
ones calculated using the above methods. By inspecting the
data in �a� of Table III, it becomes obvious that the values of
the SOECs �c11, c12, and c44 in �a� of Table III� are the best in
agreement with the experimental ones. The differences are
well within 5% for Cu, Au, and Al but a large deviation
around 20% is found for all three SOECs for Ag, which may
share the same origin as that in the lattice constant calcu-
lated. Nevertheless, the excellent overall agreement of the
SOECs provides the support for the approaches used in this
work, which appears more feasible as compared with other
ab initio calculations.41

As compared with the SOECs, the TOECs are much dif-
ficult to measure experimentally. As a result, only a small
number of fcc metals have a full set of TOECs available that
include Cu, Au, Al, and Ag.23,37–39 By inspecting the data in
�b� of Table III, we see that the overall agreement between
our calculated TOECs for all fcc metals listed and the exist-
ing experimental values is very good. For Cu and Al, we
tabulated three sets of experimental data, one at 4.2 K for
Cu, one at 80 K for Al, and two at RT for both metals. We
see that our ab initio calculation captures both the signs and
the magnitude of the TOECs very well. A small positive C456
for Cu and C123 for Al are reproduced well, and both C111
and C112 agree with experimental values very well, espe-
cially for Al. For Au, the opposite sign was found for C456,
which we suspect is caused by the temperature effect, as seen
for Cu, since the experimental value is at RT while our cal-
culation is at 0 K. A set of TOECs for Cu from a total-energy
calculation by Soma and Hiki is listed also in Table III for
comparison.

The discrepancies found in the TOECs could be origi-
nated from many sources in experiments as well as in our
calculations. For experimental measurement, as noted by
Hiki and Granato,23,42 dislocations could be easily generated
when the samples are under external loading during mea-
surement since pure single crystals have relatively low-yield
stress. The dislocations would cause interference in the ultra-
sound waves leading to errors. For this reason, those higher-
order elastic constants �C144, C155, C456, etc.� that involve
shear strain have much larger uncertainties. On the other
hand, in ab initio calculation, as noted in the work of Zhao
et al.,32 the strain range �max is an important parameter af-
fecting the accuracy of the elastic constants. This is under-
standable as the nonlinear elastic constants become signifi-
cant when the strains are larger. Another parameter is the
strain incremental value, ��. Too large a value could lead to
systematic errors.

For the above reasons, the FOECs are much difficult to
obtain in our calculations. To get converging values for them,
besides the large k-point mesh size and energy cutoffs, we
need a larger strain range �max. As for Cu, for example, C1111
converges only after �max�0.15 �see Fig. 6�. The reason
comes from that at small strain range, �4 is much less than
�2 and �3 as well. Thus, if the magnitude of �max is not
sufficiently large, large fitting errors will appear, resulting
mainly from the fitted coefficient of �4. This situation will be
improved when those errors are not comparable with the

TABLE II. The calculated and experimentally determined lattice
constants for Cu, Al, Au, and Ag. The unit is Å.

This work Expt.

Cu 3.64 3.62a

Al 4.04 4.05b

Au 4.07 4.08a

Ag 4.02 4.09a

aReference 36 �T=25 °C�.
bReference 36 �T=24.8 °C�.

(a)

(b)

FIG. 5. The dependence of the four fourth-order elastic
constants C1111,C1112,C4444,C1155 on the cutoff energy. With
30	30	30 k-point mesh size applied to all points, the relative
difference between two successive values of examined constants in
our test is lower than 1%.

HAO WANG AND MO LI PHYSICAL REVIEW B 79, 224102 �2009�

224102-6



TABLE III. The calculated �a� second-, �b� third-, and �c� fourth-order elastic constants of Cu, Ag, Au, and Al. Experimental results and
other theoretical calculations are also shown. The unit is in GPa.

�a�
C11 C12 C44

Cu 167.8a 113.5a 74.5a

169b 122b 75.3b

Al 110.4a 54.5a 31.3a

108b 62b 28.3b

Au 202.1a 174.2a 37.9a

191b 162b 42.2b

Ag 161.2a 119.1a 58.1a

122b 92b 45.5b

�b�
C111 C112 C123 C144 C155 C456

Cu −1507 a −965 a −71 a −7 a −901 a 45a

−1271 c −814 c −50 c −3 c −780 c −95 c

−1500 c −850 c −250 c −135 c −645 c −16 c

−2000 d −1220 d −500 d −132 d −705 d 25d

−1190 e −646 e 219e 17e −800 e 1e

Al −1253 a −426 a 153a −12 a −493 a −21 a

−1080 f −315 f 36f −23 f −340 f −30 f

−1224 f −373 f 25f −64 f −368 f −27 f

−1427 g −408 g 32g −85 g −396 g −42 g

Au −2023 a −1266 a −263 a −63 a −930 a 54a

−1730 c −922 c −233 c −13 c −648 c −12 c

Ag −1012 a −975 a 162a 80a −759 a 53a

−843 c −529 c 189c 56c −637 c 83c

�c�
C1111 C1112 C1122 C1123 C1144 C1155 C1255 C1266 C1456 C4444 C4455

Cu 11936a 6834a 6602a −98 a 135a 6628a −308 a 5736a −417 a 5088a −191 a

9587h 6052h 6623h 56h −287 h 8701h −390 h 4100h −43 h 6527h −404 h

7449i 4233i 4756i −262 i −262 i 4233i −262 i 4756i −262 i 4756i −262 i

10100j 5050j 5050j 0j 0j 5050j 0j 5050j 0j 5050j 0j

Al 9916a 2656a 3708a −1000 a −578 a 3554a −91 a 4309a 148a 3329a 127a

3900i 2173i 2471i −146 i −146 i 2173i −146 i 2471i −146 i 2471i −146 i

Au 17951a 8729a 9033a 416a 691a 7774a −752 a 9402a −170 a 8352a 15a

10300j 5150j 5150j 0j 0j 5150j 0j 5150j 0j 5150j 0j

Ag 13694a 7115a 6652a −387 a −154 a 5295a 3a 6718a −196 a 5416a −75 a

5780i 3495i 3818i −172 i −172 i 3495i −172 i 3818i −172 i 3818i −172 i

8000j 4000j 4000j 0j 0j 4000j 0j 4000j 0j 4000j 0j

aThis work.
bReference 23.
cAt 290 and 300 K from Refs. 23, 37, and 38.
dAt 4.2 K from Ref. 37.
eFrom a total-energy calculation �Ref. 38�.
fAt 300 and 298 K from Refs. 23 and 39.
gAt 80 K from Ref. 23.
hReference 38.
iReference 39, assuming the validity of Eq. �20�.
jReference 40, assuming the validity of Eq. �21�.
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value of �4 with a larger strain. From different testing runs,
we found that �max�0.15 is a best choice that was used in all
our calculations of the internal energy function fA���. With
this choice, we select a series of values for � within
�−0.15,+0.15� at each strain increment ��=0.0025 and then
calculate the internal energy E at a given strain �. The small
value for �� may prolong the calculations but gives better
results.

The E-� curves of fA��� are shown in Fig. 7. The relations
between E and � are fitted with a fourth-order polynomial
and the coefficients in the polynomials are obtained numeri-
cally. Using relations in Table I, we obtain the elastic con-
stants. The calculated FOECs are shown in �c� of Table III.
Since there is no single set of FOECs known experimentally
so far, the accuracy of the FOECs is difficult to judge other
than just relying on the convergence test in our calculation.
However, there are other theoretical estimations from the
past that we can use. The values listed in �c� of Table III are
from these theoretical calculations.38–40 For this reason, we
shall treat our calculation as an attempt to predict the FOECs
from ab initio calculations. Cu is the only case where we
have a complete set of FOECs from Hiki and Soma38 who
calculated all 11 independent FOECs from an approximate
scheme of total energy and the homogeneous deformation

method. For other fcc metals, various approximations includ-
ing using empirical pair potentials and Cauchy relations were
made in the calculations. As a result, the independent FOECs

FIG. 6. �a� Cu, �b� Au, �c� Al, and �d� Ag, the fourth-order elastic constants C1111 vs the strain range �max. Only at large enough strain
range do those elastic constants become convergent. For Cu, Au, Al, and Ag, we selected strain ranges of 0.15, 0.10, 0.12, and 0.12,
respectively.

FIG. 7. The calculated change in internal energy as a function of
strain for the strain tensor defined in Table I, �A, and fitted by a
fourth-order polynomial function.

HAO WANG AND MO LI PHYSICAL REVIEW B 79, 224102 �2009�

224102-8



are further reduced. We listed some of these results in �c� of
Table III for comparison.

From the observation of the elastic constants measured
from their experiment, Hiki and Granato pointed out that
while the SOECs deviate from the so-called Cauchy relations
much more, the TOECs follow the relations more closely,

C111 = 2C112 = 2C155,

C123 = C456 = C144 = 0. �20�

In fact, our results show that indeed the SOECs are far from
the Cauchy relation but the TOECs are closer. Hiki and
Granato further expected that the higher-order elastic con-
stants would follow the relations even more closely based on
the argument that as the deformation strains become larger,
the close-shell interactions between atoms become stronger.
For Al, Rose39 used the Cauchy relationship to estimate the
FOECs,

C1112 = C1155,

C1123 = C1144 = C1255 = C1456 = C4455,

C1122 = C1266 = C4444. �21�

As a result, only four independent fourth-order elastic con-
stants are left �see �c� of Table III�. These four independent
elastic constants were then obtained using an empirical pair
interaction. As for Au and Ag, Hiki et al.40 utilized the gen-
eralized Cauchy relationship to obtain the following relations
among some of the FOECs,

C1111 = 2C1112 = 2C1122 = 2C1155 = 2C1266 = 2C4444,

C1123 = C1144 = C1255 = C1456 = C4455 = 0, �22�

which obviously leads to even more reduction in the number
of FOECs.

Our results for both the TOECs and FOECs show that,
indeed, the Cauchy relations are followed, more for FOECs
than TOECs, given the possible errors in our calculations.
For example, for the FOECs for Cu, we have C1111 /C1112
=1.75, which is very close to the ratios for C1111 /C1122 and

C1111 /C1155. And C1111 /C1266 and C1111 /C4444 are close to
2.0. The values of C1123, C1144, C1255, C1456, and C4455 are
very small as compared with the rest of the FOECs. The
same trend can be found for the rest of fcc metals.

V. CONCLUSIONS

In this work, we represented a systematic scheme to com-
pute the second- and high-order elastic constants for four fcc
metals using the DFT and homogeneous deformation
method. In principle, this scheme can apply to single crys-
talline systems with arbitrary symmetry. Our theoretical re-
sults are in excellent agreement with experimental results for
the SOECs which are available from many measurements.
For the TOECs, the agreement with the available experimen-
tal data is very well also considering the sparsity of the ex-
perimental data and also the errors resulting from the diffi-
culties in the measurements. Built on the results from the
SOECs and TOECs, we took a step forward to calculate the
FOECs. While the experimental data are still not available
for those metals, our results are quite well inline with the
trends predicted from other theoretical calculations and esti-
mates. Our results in the higher-order elastic constants pro-
vide support for Hiki and Granato’s expectation that as the
atomic repulsion becomes stronger at large deformation
strain, the higher-order elastic constants would follow more
closely the Cauchy relations. Since there are fewer experi-
mental data available for TOECs and none for FOECs even
to date, our results of the FOECs are predicted values which
may serve as a valuable guide or reference for experimenters
which would someday perform a measurement. On the other
hand, we are quite encouraged by the overall results as a
proof of the applicability of the DFT calculation for such
highly sensitive quantities as the TOECs and the FOECs.
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